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Abstract
Recently, a general proof was given (Tautz et al 2006 J. Phys. A: Math.
Gen. 39 13831) that for an asymmetric relativistic particle phase-space
distribution function, and in the absence of a homogeneous background
magnetic field, any unstable linear Weibel modes are isolated, i.e. restricted
to discrete wavenumbers. In this paper, for a specific distribution function
consisting of mono-energetic counterstreaming electron and positron beams,
growth rates and associated wavenumbers for the isolated modes are
calculated, proving the existence of discrete values for unstable wavenumbers.
Furthermore, electrostatic and electromagnetic Weibel modes are investigated
for monoenergetic counterstreaming plasmas, yielding constraints to the
momentum components that have to be fulfilled in order to have unstable
wave modes.

PACS numbers: 52.27.Ny, 52.27.Ep, 52.35.Fp, 52.35.Hr, 52.35.Lv, 52.25.Dg

1. Introduction

Because of the intense focus of research of Weibel [1] modes (see also [2–4]) in astrophysical
plasmas, we have undertaken a systematic effort to address the corresponding development
of such sorts of modes when the plasma distribution functions do not have prescribed
symmetries.

The continuing interest in the Weibel instability is underscored in the astrophysical arena
by the observations of highly relativistic plasmas, highly energetic particles and their associated
radiation (see, e.g., [5] for an introduction to the subject), and by the fact that the classic Weibel
instability provides a mode growing exponentially in time but not propagating. The exponential
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growth finally saturates [6–8] and in the following the magnetic field grows further due to
coalescence processes of the current filaments that have been created by the linear growth
phase.

Special attention has been given to counterstreaming plasma distributions [9–14] because,
as first shown by Fried [15], such distributions are subject to the Weibel instability, with a
broad range of applications ranging from the creation of cosmological magnetic fields [16–18]
down to local phenomena in the solar system [19–24]. Another topic that has been extensively
investigated over the past few years is that of beam–plasma interactions (e.g., Bret et al
[25–28]).

Astrophysical situations where relativistic effects [29–31] with [32–34] or without
magnetic fields play a dominant role are burgeoning as observations uncover more complex
and bizarre behaviours that can be accounted for only by inclusion of relativistic attributes, be
it in bulk quantities (such as relativistic beaming effects in pulsars, active galactic nuclei and
gamma-ray bursts [35–37], see also [38–40] for an overview on the physics of GRB) or in the
intrinsic particle distributions themselves (such as cosmic rays).

However, all of the mentioned work involves symmetric or at least gyrotropic (i.e.,
symmetric around the axis of the counterstream and/or the background magnetic field)
distribution functions. In a recent paper (Tautz et al [41], which will hereafter be referred to as
paper I), linear purely growing instabilities in a relativistic plasma have been investigated in the
absence of a homogeneous background magnetic field. Whereas broad wavenumber ranges
can be found that permit unstable wave modes for a symmetric particle distribution function,
for an asymmetric particle distribution function it has been proven in general that any unstable
Weibel modes are isolated. Unless the asymmetry is precisely zero, instead of a broad range of
unstable wavenumbers occurring for symmetric distribution functions, there exist only discrete
wavenumbers that permit unstable modes. Furthermore, for asymmetric plasmas, electrostatic
and electromagnetic wave modes are coupled to each other and, therefore, the degeneracy of
the two electromagnetic wave modes is broken.

The question of whether such isolated modes actually exist, however, has not yet been
addressed. Only if the equations that determine the growth rate and wavenumber have
real and positive solutions, are there unstable modes that are isolated. Here we explore
whether isolated Weibel modes exist for even a simple example of a mono-energetic particle
distribution function and determine their growth rate as well as their isolated wavenumber
values.

This paper is organized as follows: in section 2, unstable electrostatic Weibel modes are
explored for counterstreaming mono-energetic plasma beams, showing: (i) their existence; and
(ii) analytic expressions for their maximum growth rate and maximum unstable wavenumber,
as well as constraints to the momentum components that have to be fulfilled to permit
unstable wave modes. In section 3, electromagnetic Weibel modes are investigated for a non-
cylindrically symmetric distribution function because, as shown in paper I, the degeneracy of
the two electromagnetic wave modes is then broken. In section 4, it is shown that isolated
wave modes exist for an asymmetric distribution function, and growth rates as well as the
associated wavenumbers are calculated numerically as a function of the Lorentz factor for two
interpenetrating electron and positron beams.

The basic dispersion relation [42], described by a 3 × 3 determinant, was already
introduced in the first paper. We therefore do not provide a detailed introduction and refer
the interested reader to paper I. Because the investigation is undertaken in the absence of
a homogeneous magnetic field in order to evaluate both the coupling effects as well as the
degeneracy breaking factors for Weibel-like modes, the propagation direction of the unstable
waves will be constrained to the x-direction without any loss of generality.
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2. Electrostatic Weibel modes

For symmetric distribution functions, F, with F symmetric in each component of the
momentum vector p, i.e. F = F

(
p2

x, p
2
y, p

2
z

)
where wave behaviour is exp[ikx + Mkct]

with M real, the 3 × 3 dispersion relation decouples and the electrostatic component satisfies

k2 =
∑

a

ξ 2
a

∫
d3p

γ

px − iMγ

∂Fa

∂px

(1a)

Because Fa is symmetric in px one can write

k2 = 2
∑

a

ξ 2
a

∫ ∞

0
dpx

∫
d2p⊥

pxγ

p2
x + M2γ 2

∂Fa

∂px

, (1b)

where d2p⊥ = dpy dpz. Furthermore, γ 2 = 1 + p2
x + p2

y + p2
z denotes the squared Lorentz

factor, and ξ 2
a = 4πnae

2
a

/
(mac

2) denotes the inverse squared skin depth, where na is the
number density of particle species a.

If ∂Fa/∂px < 0 everywhere then there are no modes to equation (1a) with M real and k
real because the right-hand side of equation (1b) is negative. Consider then that ∂Fa/∂px can
change sign in px . Integrate equation (1b) by parts to obtain

k2 = −2
∑

a

ξ 2
a

∫ ∞

0
dpx

∫
d2p⊥Fa

∂

∂px

(
pxγ

p2
x + M2γ 2

)
(2a)

= −2
∑

a

ξ 2
a

∫ ∞

0
dpx

∫
d2p⊥Fa

γ 2
⊥
γ

M2γ 2 − p2
x(

p2
x + M2γ 2

)2 (2b)

where γ 2
⊥ = 1 + p2

y + p2
z .

Note that if one takes M2 � 1 equation (2b) has no solutions with k real because the
integral is positive. Hence any Weibel modes are limited to M2 < 1, corresponding to the
growth rate being subject to the constraint � < kc.

Consider that such a mode exists. Then ask: for what finite values of M can k = 0?
Equation (2b) indicates that these values M� are given by

M2
�

∑
a

ξ 2
a

∫ ∞

0
dpx

∫
d2p⊥

Faγ
2
⊥γ(

p2
x + M2

� γ 2
)2 =

∑
a

ξ 2
a

∫ ∞

0
dpx

∫
d2p⊥

Faγ
2
⊥γ(

p2
x + M2

� γ 2
)2

(
px

γ

)2

.

(3)

The right-hand side integral is always less than the left-hand side integral (and both are
positive definite) for all real values of M�. Hence

M2
� =

∑
a

ξ 2
a

∫
d3p

Faγ
2
⊥γ(

p2
x + M2

� γ 2
)2

(
px

γ

)2
(∑

a

ξ 2
a

∫
d3p

Faγ
2
⊥γ(

p2
x + M2

� γ 2
)2

)−1

, (4)

with M2
� < 1 as required.

Consider values of M in the neighbourhood of M�. Write M2 = M2
� + δM . Then

k2 = 2 δM
∑

a

ξ 2
a

∫ ∞

0
dpx

∫
d2p⊥

Faγ
2
⊥γ

(
M2

� γ 2 − 3p2
x

)
(
p2

x + M2
� γ 2

)3 . (5)

Thus, to one side or the other of M� the plasma has Weibel modes that grow with time.
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If the integral in equation (5) is such that

M2
�

∑
a

ξ 2
a

∫ ∞

0
dpx

∫
d2p⊥

Faγ
2
⊥γ 3(

p2
x + M2

� γ 2
)3 ≷ 3

∑
a

ξ 2
a

∫ ∞

0
dpx

∫
d2p⊥

Faγ
2
⊥γ 3(

p2
x + M2γ 2

)3

(
px

γ

)2

(6)

then, at the very least, the neighbourhood δM ≷ 0 around M2
� (but with 0 < M� + δM < 1)

provides unstable electrostatic Weibel modes. In equation (6), the symbol ‘≷’ corresponds to
δM ≷ 0, i.e., ‘>’ for δM > 0 and ‘<’ for δM < 0. Therefore, δM ≷ 0 also implies δM �= 0.

The time dependence of the instability is given by exp[kcMt], i.e., for unstable modes
one requires kM > 0. Now, from equation (5) one has k2 = 2I (M�)δM , where I (M�) denotes
the integral in equation (5). For I (M�) ≷ 0, therefore, k2 > 0 holds when δM ≷ 0. Then the
growth rate � = kcM is given by

� = cM

√
2(M2 − M2

� )I (M�). (7)

For a non-relativistic plasma, in which one sets γ = 1 in equation (1b), one has

k2 = −2
∑

a

ξ 2
a

∫
d3p Fa

∂

∂px

(
px

p2
x + M2

)
(8a)

= −2
∑

a

ξ 2
a

∫
d3p Fa

M2 − p2
x(

p2
x + M2

)2 . (8b)

Equation (8a) does not provide an automatic constraint on M in order that Weibel-like
modes exist, which is completely the opposite to the full relativistic treatment where M < 1
is necessary.

To show that such Weibel-like modes exist is most easily accomplished by considering a
double-beam electron–positron plasma with charge neutrality in each beam so that one would
write

Fa = 1

2π
[δ(px − �) + δ(px + �)]δ

(
p2

⊥ − 	2
)

(9)

thereby preserving the symmetry under pi → −pi for i ∈ {x, y, z}. Note that
∫

Fa d3p = 1.
Then from equation (2b) one has

k2 = −2ξ 2
e

M2 − v2
x(

M2 + v2
x

)2

γ 2
⊥

γ 3
, (10)

with γ 2
⊥ = 1 + 	2, γ 2 = γ 2

⊥ + � 2 and v2
x = � 2/γ 2.

The instability rate, �, is then given through

�2 = 2c2ξ 2
e
γ 2

⊥
γ 3

(1 − w2)w2

(1 + w2)2
, (11)

where w = M/vx . The instability rate has a maximum on w2 = 1/3 when

�2
max = c2ξ 2

e
γ 2

⊥
8γ 3

(12a)

and the associated wavenumber is

k2
max = c2ξ 2

e
3

4v2
x

γ 2
⊥

γ 3
(12b)

and Mmax = vx/
√

3.
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All wavenumbers in 0 � k � k� are unstable with k2
� = 8k2

max/3. Note that because
vx � 1 then M2 < 1 as required for an instability.

Non-relativistically one would have

�2 = 2ξ 2
e
(1 − u2)u2

(1 + u2)2
(13)

with u = M/|px |, so that �2
max = ξ 2

e /4, Mmax = �max/
√

3 and kmax = 3ξ 2
e /

(
4�2

max

)
, showing

the basic differences between the relativistic and non-relativistic treatments. The range of
unstable wavenumbers in the non-relativistic treatment is 0 � k � k̃, with k̃2 = 2k2

�/�
2.

3. Electromagnetic Weibel modes

The two electromagnetic modes are given by

k2(1 + M2) = −
∑

a

ξ 2
a (gx,a + gz,a + Iyy,a) (14a)

k2(1 + M2) = −
∑

a

ξ 2
a (gx,a + gy,a + Izz,a). (14b)

In general, for an asymmetric plasma, one has

I(yy,zz),a =
∫

d3p
Fap

2
y,z

γ 3
(
p2

x + M2γ 2
)2

[
p2

x

(
γ 2

⊥ + 2p2
x + 2M2γ 2

) − M2γ 2γ 2
⊥
]

(15a)

gx,a =
∫

d3p
1 + p2

x

γ 3
Fa(p) (15b)

g(y,z),a =
∫

d3p
p2

y,z

γ 3
Fa(p). (15c)

Because gx,a and gy,a are both positive, in order to have an electromagnetic mode with
k2 > 0 for M real one requires the necessary constraint

∑
a Iyy,a < 0 or

∑
a Izz,a < 0. Note

that such a constraint is not sufficient because gx,a and gy,a are real and positive. One requires
the necessary and sufficient constraint∑

a

ξ 2
a Iyy,a < −

∑
a

ξ 2
a (gx,a + gz,a) (16a)

or ∑
a

ξ 2
a Izz,a < −

∑
a

ξ 2
a (gx,a + gz,a). (16b)

Note that, unlike the electrostatic mode, there is no obvious, universal limitation on the
value of M in order to obtain k2 > 0. Instead any limitations on M arise from the type
of plasma distribution function chosen and are, therefore, plasma specific rather than being
universal.

One can, however, note that as M → ∞, both Iyy,a and Izz,a vary as M−2 so that
equations (16a) and (16b) cannot be satisfied. There is thus a maximum limit on M in order
to have k2 > 0, which limit varies as the plasma distribution functions are varied.

To exhibit the degeneracy breaking again consider a double-beam neutral electron–
positron plasma with

Fa = 	y	z

2
[δ(px − �) + δ(px + �)]δ

(
p2

y − 	2
y

)
δ
(
pz − 	2

z

)
(17)

so that Fa is symmetric under pi → −pi for i ∈ {x, y, z} and
∫

Fa d3p = 1.
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In this situation, the condition (inequalities (16a) and (16b)) that one obtains k2 > 0 for
real M can be written as(

	2
y;	2

z

)
γ 3(� 2 + M2γ 2)2

[
� 2

(
γ 2

⊥ + 2� 2 + 2M2γ 2
) − M2γ 2γ 2

⊥
]

� −1 + � 2 +
(
	2

y;	2
z

)
γ 3

(18)

with γ 2 = 1 + � 2 + 	2
y + 	2

z , and γ 2
⊥ = 1 + 	2

y + 	2
z = γ 2 − � 2.

Thus one of the following conditions must be fulfilled: either

	2
y

[
� 2

(
γ 2

⊥ + 2� 2 + 2M2γ 2
) − M2γ 2γ 2

⊥
]

< − (
1 + � 2 + 	2

z

)
(� 2 + M2γ 2)2 (19a)

or

	2
z

[
� 2

(
γ 2

⊥ + 2� 2 + 2M2γ 2
) − M2γ 2γ 2

⊥
]

< −(
1 + � 2 + 	2

y

)
(� 2 + M2γ 2)2. (19b)

Equations (19a) and (19b) are quadratic inequalities in M2, requiring that M2 either
exceeds a minimum of M2

min, or be less than a maximum of M2
max, respectively. For instance,

inequality (19b) can be written as the condition

M4γ 2
(
γ 2 − 	2

y

)
+ M2

(
2� 2γ 2 − 	2

yγ
2
⊥
)

+ � 2
(
� 2 + 	2

y

)
< 0 (20)

showing that it is necessary to have

	2
yγ

2
⊥ > 2� 2γ 2 (21)

in order to have any solution with M2 real. And when inequality (21) is satisfied then a
minimum Mmin, and a maximum Mmax occur at

M2
min,max

[
2γ 2

(
γ 2 − 	2

y

)] = γ 2
(
	2

yγ
2
⊥ − � 2γ 2

)
∓ [(

	2
yγ

2
⊥ − � 2γ 2

)2 − 4γ 6� 2
(
� 2 + 	2

y

)(
γ 2 − 	2

y

)]1/2
(22)

which requires the further condition be satisfied that(
	2

yγ
2
⊥ − 2� 2γ 2

)2 � 4γ 6� 2
(
� 2 + 	2

y

)(
γ 2 − 	2

y

)
. (23)

When both equations (21) and (23) are obeyed then

k2 = 2ξ 2
e

γ 3
(
p2

x + M2γ 2
)2 (1 + M2)−1

{
	2

y

[
� 2

(
γ 2

⊥ + 2� 2 + 2M2γ 2
) − M2γ 2γ 2

⊥
]

+
(
1 + � 2 + 	2

z

)(
p2

x + M2γ 2
)2}

. (24)

The growth rate, � = kMc, of the wave then satisfies

�2 = M2

1 + M2

2c2ξ 2
e(

p2
x + M2γ 2

)2

(
M2

max − M2
)(

M2 − M2
min

)
(25)

showing a peak value of M lying in ]Mmin,Mmax[. If either inequality (21) or inequality (23)
are not satisfied then there are no purely growing electromagnetic modes for the two-stream
electron–positron symmetric plasma.

For other than a symmetric, cold, beam plasma one must evaluate the integrals in Iyy,a and
Izz,a to determine where, or whether, a range of positive M values can exist allowing k2 > 0.

For inequality (19b), the same sense of argument is obtained as that just presented for
inequality (19b). There is no need to repeat the argument.
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4. Isolated modes

In this section, an asymmetric distribution function is adopted, for which neither F(p) =
F(−p) nor F(pi, pj , pk) = F(−pi, pj , pk) with i, j, k ∈ {x, y, z} is fulfilled. Therefore, all
nine elements of the 3 × 3 determinant describing the dispersion relation are non-vanishing.
As proven in paper I, for an asymmetric distribution function all unstable Weibel modes are
restricted to discrete wavenumbers. In order to calculate actual growth rates, however, an
analytic investigation is complicated and, therefore, a numerical approach is favoured.

The asymmetric distribution function is constructed of two interpenetrating particle beams,
one of which is formed only by electrons, whereas the other one carries only positrons.
Therefore the following form for the electron and positron distribution functions are adopted,
respectively:

Fe = δ(px − �x)δ(py − �y)δ(pz − �z) (26a)

Fp = δ(px + �x)δ(py + �y)δ(pz + �z). (26b)

Due to the requirement of charge neutrality, the normalized momenta �j , with j ∈
{x, y, z}, of electrons and positrons have to be equal. The symmetric and anti-symmetric parts
of the distribution functions then yield

FS,A
e = ±FS,A

p = 1

2


∏

j

δ(pj − �j) ±
∏
j

δ(pj + �j)


 , (27)

where the ‘+’ and ‘−’ signs refer to FS and FA, respectively.

4.1. The elements of the dispersion relation

The elements occurring in the 3 × 3 determinant of equation (12) of paper I,∣∣∣∣∣∣
k2 − 
 Cy Cz

−Cy k2 + Y D

−Cz D k2 + Z

∣∣∣∣∣∣ = 0 (28)

can then easily be evaluated and are listed in appendix A. As shown in paper I, the real and
imaginary parts of the determinant from equation (28) are polynomials in k2 of order 3 and 2,
respectively and can, therefore, be cast in the form

0 = a(M)κ6 + b(M)κ4 + d(M)κ2 + f (M) (29a)

0 = b̃(M)κ4 + d̃(M)κ2 + f̃ (M), (29b)

where, in contrast to paper I, the factors a, b, b̃, d, d̃, f , and f̃ consist of the normalized
factors from appendix A and are listed in appendix B. For later use, the wave vector has been
written as k2 = 2κ2ξ 2

e , with ξ 2
e = ω2

p,e

/
c2, where ωp,e denotes the electron plasma frequency.

Introducing

η(M) = f̃ (M)b(M)b̃(M) − d̃(M)f̃ (M)a(M) − f (M)b̃(M)2 (30a)

ζ(M) = d̃(M)2a(M) − f̃ (M)a(M)b̃(M) − d̃(M)b(M)b̃(M) + d(M)b̃(M)2 (30b)

which correspond to the factors η(M) and ζ(M) from equations (17a) and (17b) of paper I
multiplied by b̃(M)2, then allows one to write equation (18) of paper I in the form

b̃(M)η(M)2 + d̃(M)η(M)ζ(M) + f̃ (M)ζ(M)2 = 0, (31)

thereby avoiding the zeros of b̃(M) when numerically searching for solutions of equation (31).
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0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

γ

M (γ)     
Γ (γ)

Figure 1. The isolated values for M and the associated growth rate � = √
2κM (normalized to

the electron plasma frequency) as a function of the Lorentz factor γ . For each value of γ , a single
value for the wavenumber and the growth rate can be obtained, corresponding to isolated, purely
growing (� > 0) Weibel modes.

0 10 20 30 40 50
0

0.5

1

1.5

2

γ

κ2  (
M

(γ
))

Figure 2. The squared normalized wavenumber κ2 for the isolated Weibel modes as a function of
the Lorentz factor γ .

4.2. Numerical evaluation

For simplification, �x = �y = �z ≡ � is assumed. In this case there is a single free
parameter, namely the Lorentz factor γ , that has to be equal for electrons and positrons in
order to assure the charge neutrality. The momentum is then obtained as � = [(γ 2 −1)/3]1/2.

The polynomial equation (31) can be solved numerically as a function of the Lorentz factor,
yielding discrete values for the growth rate � and the associated (normalized) wavenumber
κ that describe isolated wave modes. The wavenumber is evaluated from the condition
κ2 = η′(M)/ζ ′(M), where the factors η(M) = η′(M)ξ 6

e and ζ(M) = ζ ′(M)ξ 4
e are given from

equations (30a) and (30b).
One of the various solutions for M as a function of the Lorentz factor γ is shown in figure 1,

together with the (normalized) growth rate � = √
2κM . The growth rate has a maximum

for counterstreams with a Lorentz factor of γ 
 5.11. In figure 2, the associated (squared)
wavenumber values are shown, which are positive provided γ � 3.43. Therefore, for values
of γ greater than a specific value (dependent on the details of the distribution function),
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this illustration proves that isolated, purely growing Weibel modes exist for the distribution
function of equations (26a) and (26b).

There are other solutions of equation (31) apart from that shown in figure 1. However,
these solutions correspond to negative κ2 and are, therefore, of no value to the investigation
of unstable isolated Weibel modes.

5. Summary and discussion

With this series of two papers, unstable relativistic Weibel modes have been investigated in
the absence of a homogeneous background magnetic field.

In the first paper (Tautz et al [41]), different types of momentum symmetry in the
distribution function have been investigated, i.e., symmetry in each momentum component and
total momentum symmetry. Next, for a non-cyndrically symmetric distribution function, it was
shown that the degeneracy of the two electromagnetic wave modes was broken. Furthermore,
for a totally asymmetric distribution function, a general proof was given that any unstable
Weibel modes are isolated, i.e., restricted to discrete values for the growth rate and the
associated wavenumber.

In this second paper, three subjects have been addressed: first, unstable electrostatic
Weibel modes have been investigated and it has been shown that, for relativistic plasmas,
growth rate values are restricted to � < ck (i.e., M < 1).

Second, for a distribution function that is asymmetric in the plane perpendicular to the
direction of wave propagation, it was shown that the degeneracy of the two electromagnetic
wave modes is broken. Furthermore, analytic constraints to the momentum components were
derived that have to be fulfilled in order to obtain unstable wave modes.

Third, according to the general proof given in paper I that, for an asymmetric distribution
function, any unstable Weibel modes are isolated, a simple asymmetric distribution function
with mono-energetic, interpenetrating electron and positron beams was adopted for illustration
purposes. The existence of isolated growth rate values and their associated wavenumbers as
a function of the beams’ Lorentz factor as well as values for the maximum growth rate were
calculated numerically. Furthermore, it was shown that these isolated unstable Weibel modes
occur for relativistic beams with γ > 1 (if the momentum components of the beams are equal
in all three directions, this constraint yields γ � 3.43). The determination of all the classes of
asymmetric distribution functions that permit isolated Weibel modes is beyond the scope of
the present paper. The simple illustrations used here show, however, that such isolated modes
exist.

We conclude, therefore, that unstable isolated wave modes can be of importance especially
in relativistic beams that are, for example, present in astrophysical jet sources such as gamma-
ray bursts (GRB) and active galactic nuclei (AGN).

It has not escaped our attention that the transition from isolated Weibel modes to the
standard continuum representation as one treats with a plasma that is either asymmetric
or symmetric, respectively, is a problem requiring further elucidation than we give here.
As already mentioned in paper I, it is possible that the countable set of discrete modes
is comparable to that obtained from multi-beam plasmas. In such cases the count of
discrete modes in each momentum interval tends to infinity as the number of beams becomes
unlimitedly large. This leads, therefore, to the continuum representation of the modes. It
is not clear by now, whether the same is true for the isolated Weibel-type modes when an
initially asymmetric distribution function becomes symmetric in character. If such was the
case, however, the limit of an increasing number of discrete values is still unlikely to yield
a whole interval, as the referee has noted: an increasing number of discrete values can only
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yield an infinite countable set that is in bijection with N (the set of integer numbers), and not
an uncountable set like R (the set of real numbers). The problem is that a real interval is not
in bijection with N (it is ‘larger’). It seems, therefore, that the transition cannot be smooth.
We have this problem under active investigation at the moment and results will be reported in
due course.
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Appendix A. The elements of the determinant from equation (28)

The elements needed in equation (28) are defined in equations (13) of paper I and yield for
the distribution functions from equations (26a) and (26b):


R = γ 2
⊥

γ
(
� 2

x + M2γ 2
)2

(
� 2

x − M2γ 2
)

(A.1a)


I = 2M�x(
� 2

x + M2γ 2
)2

(
γ 2 − � 2

x

)
(A.1b)

CR
y,z = �y,z(

� 2
x + M2γ 2

)2

(
� 2

x − M2γ 2
⊥
)

(A.1c)

CI
y,z = 2M�x�y,z(

� 2
x + M2γ 2

)2 (1 + M2) (A.1d)

DR = −�y�z

γ 3
+

�y�z(
� 2

x + M2γ 2
)2

(
� 2

x − M2γ 2
⊥
)

(A.1e)

DI = 2M�x�y�z(
� 2

x + M2γ 2
)2 (1 + M2) (A.1f )

YR = 1 + � 2
x + � 2

z

γ 3
+

� 2
y γ 2

⊥
γ 3

(
� 2

x + M2γ 2
)2

(
� 2

x − M2γ 2
)

(A.1g)

Y I = 2M�x�
2
y(

� 2
x + M2γ 2

)2 (1 + M2) (A.1h)

ZR = 1 + � 2
x + � 2

y

γ 3
+

� 2
z γ 2

⊥
γ 3

(
� 2

x + M2γ 2
)2

(
� 2

x − M2γ 2
)

(A.1i)

ZI = 2M�x�
2
z(

� 2
x + M2γ 2

)2 (1 + M2), (A.1j )

where γ = (
1 + � 2

x + � 2
y + � 2

z

)1/2
and γ⊥ = (

1 + � 2
y + � 2

z

)1/2
. Furthermore, all elements

are normalized to ξ 2
e = ω2

p,e

/
c2, where c/ωp,e denotes the electron skin depth.
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Appendix B. The elements of the polynomials determining M

The elements entering the polynomials in κ from equations (29a) and (29b) are

a(M) = 1 (B.1a)

b(M) = −(

R + YR + ZR

)
(B.1b)

d(M) = (
CR

y

)2 − (
CI

y

)2 − (
CI

z

)2
+

(
CR

z

)2 − (DR)2 + (DI )2

−
RYR + 
IY I + (
I − Y I )ZI − (
R − YR)ZR (B.1c)

f (M) = 2
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y CI
z + CR

z CI
y

)
DI − 2

(
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y CR
z − CI

yCI
z

)
DR +

[
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]

R

+
[(

CR
z

)2 − (
CI

z

)2]
Y I + 2CI

z CR
z YR

+
[(

CR
y

)2 − (
CI

y

)2 − 
RYR + 
IY I
]
ZI

+
(
2CI

yCR
y − 
RY I − 
IYR

)
ZR (B.1d)

b̃(M) = −(
I + Y I + ZI ) (B.1e)

d̃(M) = 2
(
CI

yCR
y + CI

z CR
z − DIDR

) − 
R(Y I + ZI ) − 
I(YR + ZR) + YRZI + Y IZR

(B.1f )

f̃ (M) = 2
(
CI

yCI
z − CR

y CR
z

)
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(
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y CI
z + CI

yCR
z

)
DR + [(DR)2 − (DI )2]
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+ 2DRDI
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